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ABSTRACT

Climate science is expanding at a pace that outstrips the capacity of existing assessment processes. The IPCC alone must
now screen tens of thousands of new publications every cycle, yet the current system relies on manual curation and synthesis
spread across hundreds of experts over multiple years. This creates a synthesis bottleneck: evidence bases become outdated
soon after the time reports appear, and the ability of policy makers to act on the latest knowledge becomes limited. Existing Al
and bibliometric tools demonstrate the potential to map research landscapes, but they remain opaque, or proprietary, provide
limited coverage and do not integrate with the workflows of global environmental assessments.

This project develops an open, transparent, and continuously updated literature synthesis tool tailored to the needs of the
IPCC and related processes. Building on AR7 outlines and seed references, the system expands outward via citation networks
and semantic search to construct supra-sets of potentially relevant studies, which are then filtered and summarised using
large language models tuned for factual retention. Each extracted finding is anchored to its source text and validated through
independent models to reduce errors and ensure correctness. As a first step, we will compare the coverage of automated
searches with the reference corpora of past IPCC reports (e.g. AR5, ARS6), quantifying where human-led strategies missed
relevant literature. These benchmarks will then be used to fine-tune the Al-assisted search process before deploying it
prospectively on AR7. Validated results are integrated into a live HTML version of the IPCC reports, enriched with timestamps,
confidence levels, and direct links to sources, and made available via an API for integration with Integrated Assessment Models
(IAMs). This workflow mirrors the way human authors construct assessments, but extends their reach and timeliness by
automating discovery, validation, and integration.

The originality lies in combining the breadth of automated evidence mapping with the precision using meta-science approaches
and accountability needed for assessment-ready synthesis. Unlike proprietary systems, the pipeline is fully open source
and auditable, designed as a glass box rather than a black box. Its contribution is to close the gap between fast-growing
scientific literatures and policy-relevant synthesis, creating a living, continuously updated knowledge base. While focused on
climate science and the IPCC, the system generalises to any domain requiring evidence-intensive reviews, from biodiversity
assessments to public health guidelines. By building a validated Al-for-science pipeline embedded in an institute with strong
IAM expertise, the project strengthens Austria’s role in shaping international climate knowledge infrastructures and accelerates
the timeliness, transparency, and policy relevance of global environmental assessments.

1 State of the Art

Climate change stands among the most profound challenges of our time. Since the first quantitative prediction of CO2-induced
warming [1] and early estimates of climate sensitivity [2, 3], research has expanded to encompass economic impacts [4], carbon
budgets [5], and planetary boundaries [6], reaffirming both the severity of the crisis and the urgency of global responses.

Global environmental assessments (GEAs) such as the IPCC, IPBES, GEO, UNEP’s Gap reports, and the Global Sustainable
Development Report provide crucial evidence on environmental change and guide action-oriented policy [7]. They have shaped
international negotiations and agreements, including the Paris Agreement [8, 9]. The IPCC in particular has long informed
climate governance, with AR6 highlighting the urgency of mitigation and adaptation and feeding into the Global Stocktake
[10]. Yet concerns remain about their ability to keep pace with the rapidly expanding scientific literature [11, 7]. The number
of publications grows exponentially doubling roughly every 15 years while human attention and processing capacity remain
bounded [12, 13]. This creates an unavoidable tension: ever more knowledge is produced, but the ability of experts to keep
pace with emerging findings is limited, producing a synthesis bottleneck.

The IPCC exemplifies both the strengths and limits of manual synthesis. Each cycle mobilises hundreds of experts over
5-7 years [14], during which tens of thousands of publications must be screened as the literature grows rapidly. In ARS,



authors assessed about 30,000 publications [15], while in AR6 this doubled to more than 66,000 [16]. Working Group I in AR6
engaged 234 authors to review 14,000 papers and address 78,000 review comments [17], while Working Group III involved
278 lead authors and 354 contributing authors to assess 18,000 papers and respond to 59,000 comments [18]. Beyond this scale,
assessments have expanded from physical science to impacts, mitigation, adaptation, and social dimensions [19, 20], drawing
on disciplines from economics and psychology to engineering and the humanities, and reaching audiences from negotiators to
NGOs and businesses worldwide [20]. The direct IPCC Trust Fund expenditure for 2024 exceeded €5 million [21], excluding
in-kind contributions. Assessment writing is thus one of the most resource-intensive processes in global science, and the lag of
several years between research and synthesis creates a bottleneck.

Recent advances in machine learning (ML) and natural language processing (NLP) promise to ease this bottleneck. Machine
learning evidence maps of climate impacts [22] aggregated over 100,000 impact studies and revealed geographic attribution
gaps, but they remain static and stop short of producing assessment-ready synthesis. Al-driven mapping of adaptation policies
[23] identified systematic differences across governance levels, yet highlighted persistent blind spots in vulnerable countries
and lacked iterative updating. A “living” ML map of 84,000 mitigation policy studies [24] demonstrated disparities between
research attention and emissions, but still lacked integration into modelling frameworks. Al-enhanced systematic mapping of
carbon dioxide removal (CDR) literature [25] uncovered three times more relevant publications than prior estimates, but outputs
were static and disconnected from IAM parameters. Large-scale bibliometric studies [26, 27] map research landscapes, but
remain descriptive without mechanisms for continuous integration. Domain-specific models such as ClimateBERT [28] have
improved classification in corporate climate disclosures, and transformers have enabled attribution mapping of climate impacts
[22] and systematic reviews in adaptation and health [29, 30, 31]. These approaches also open pathways for multilingual
evidence synthesis, addressing English-language bias through translation and cross-lingual classification [32, 33]. Living
evidence synthesis platforms [34] and Al-supported screening [35] show promise, while frameworks for structured confidence
evaluation [36, 37, 38] mirror and extend expert judgment in assessment processes. Yet problems remain: hallucination risks,
frozen corpora that become outdated, and uneven performance in long-form synthesis [39, 40]. General-purpose chatbots (e.g.,
ChatGPT, Claude Sonnet, Gemini) provide fast answers but lack coverage, transparency, and reliability in long-form scientific
tasks [41, 42]. Specialized Al-for-science tools, by contrast, target literature discovery and synthesis but face other limitations:
most are proprietary and closed-source (see Table ??), with restricted free tiers, opaque methods, and limited synthesis scale.
Few explicitly support consensus-building, underscoring the difficulty of achieving open, transparent, and assessment-ready
Al-powered scientific discovery.

Therefore, what is missing is an approach that combines the breadth and scalability of automated evidence mapping
with the precision and accountability required for policy ready assessments. What is needed is an open-source tool that can
simultaneously expand coverage across the rapidly growing literature, anchor findings directly to their sources, and integrate
them into the IPCC framework without introducing hallucinations or relying on black boxes. Only such a design can close the
growing gap of literature synthesis improving timeliness while maintaining rigour in climate science.

Tool Open Free Data Source/Coverage Black Synthesis Size Summary Targeted Con-
Source Box sensus
Semantic No Yes Semantic Scholar corpus | No Discovery only Yes (TLDR) No
Scholar[43] (200M+ papers, multidisci- | (API+UI)
plinary)
Elicit[44] No Yes*, Paid 100M+ (Semantic Scholar, | Mostly 10/25/40 Yes Partial (evidence
abstracts/ fulltext if open) table)
Consensus[45] No Yes*, Paid 200M+ (Semantic Scholar, | Yes 1,500 filtered, top | Yes Yes (explicit
OpenAlex, web crawl) 20 synthesized claim meter)
Paperguide[46] No Yes*, Paid 200M+ (broad, not fully | Yes ~100 Yes Yes
publicized) (Q&A/synthesis)
Scite[47] No Free trial, | Mixed (Elsevier, PubMed, | Part Per-paper/field No No
Paid others, open)
Connected No Yes*, Paid Semantic Scholar, ODC- | Yes ~50,000 (graph) No No
Papers[48] BY, ResearchGate,
Academia
Research No Yes (free) OpenAlex, Semantic | Yes Thousands, visual | No No
Rabbit[49] Scholar
Scholarcy[50] No Yes*, Paid Uploaded papers only Yes Tens—hundreds Yes No
SciSpace[51] No Yes*, Paid Multisource, open aca- | Yes 5-20 (per synthe- | Yes No
demic papers/metadata sis)
Iris.ai[52] No Free*, Paid Open, paywalled, enter- | Yes Hundreds Yes No
prise data

Table 1. Feature comparison of top Al-for-science tools. (*=very limited)
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2 Objectives

To address the synthesis bottleneck outlined above, this project will build an automated, systematic literature synthesis tool for
climate science that keeps IPCC reports continuously updated with minimal manual supervision.

How can we construct the supra-set of potentially relevant literature? Building on the AR7 outlines [?], we treat each
chapter’s bullet points as topics. For each topic, we identify a small seed set of well-known, highly cited, or otherwise central
papers. These seeds are then expanded into a supra-set of potentially relevant articles by (i) crawling the citation network in
both directions (backward to foundational works and forward to newer studies), and (ii) running semantic and keyword-based
searches to capture semantically linked literature not connected by citation. At this stage, recall and coverage are prioritized
over precision: it is more important to avoid missing relevant literature, while false positives will be handled in the filtering
stage.

Can we develop more comprehensive search strategies of scientific literature compared to manual curation in past
IPCCs? A first test of our system will be to evaluate how well automated strategies reconstruct the literature base of previous
IPCC reports. Using the outlines of past assessments, we will identify key topics and seed papers, then run our search algorithm
(citation expansion + semantic search) to generate a supra-set of potentially relevant studies. We will compare the coverage of
this supra-set against the actual set of papers cited in past IPCC chapters. Notice that at this stage recall and overall coverage
are prioritized over precision, since false positives will be filtered in later stages. This exercise will allow us to quantify gaps in
human-curated reports that arose from resource constraints and compare them to the broader, less resource-limited coverage
achieved by automated methods. Our benchmark will be achieving at least 90% recall of IPCC-cited papers across Working
Groups, while documenting additional relevant studies that were missed by manual processes.

How well does the system perform compared to manual curation and existing Al tools, and what does this mean for
policy relevance and trust? We will benchmark performance against the gold standard of manual annotation in IPCC
processes, testing retrieval, classification, and synthesis accuracy at each step of the pipeline. We will also capture (i)
coverage gains over curated IPCC reference lists at fixed precision, (ii) end-to-end accuracy via expert labelled test sets with
precision/recall, calibration, and validator stability, and (iii) closeness of automated key takeaway insertion to expert authored
IPCC text. In parallel, we will compare our system’s outputs to existing ML-based bibliometric tools and general purpose
LLMs (e.g., ChatGPT, Gemini, Claude) to establish relative strengths and weaknesses. The results will be assessed not only for
technical accuracy but also for decision utility: time-to-evidence, trust in Al made additions, and perceived policy relevance by
[PCC authors and modellers.

Can we achieve reliable, continuous literature integration into IPCC reports? Continuous integration comes after supra-
set construction + relevance filtering. We will design a hybrid human-Al workflow that automatically retrieves, validates, and
inserts new climate science findings into a live HTML version of the IPCC reports, with cited sources preserved down to the
level of each new added sentence.

Can Al be used for horizon scanning for IPCC gaps, detect blind spots and emerging domains? Recent Al-enhanced
mapping in carbon dioxide removal uncovered 28,976 studies, roughly 3 to 4 times earlier counts [25]. Our Al-augmented
search system will help future assessments avoid such gaps. Furthermore, AR6 highlighted clear priorities: in mitigation, more
robust MRV for carbon dioxide removal, demand and services side options, and transparent scenario curation linked to national
pathways [53, 54, 55, 56, 57, 58, 59]; in adaptation, stronger evidence on limits, cascading risks, and urban systems [60, 61];
and in physical science, better detection/attribution of extremes and compound events [62]. Our tool will operationalise these
priorities by continuously tracking growth signals (e.g., citation bursts, novelty terms, and publication activity), quantifying
post ARG attention, and routing results into curated watchlists and “trend cards” with validator scores, timestamps, and links to
source PDFs. Beyond reinforcing known priorities, it will also detect emerging blind spots: identifying novel lexicon in titles
and abstracts, as well as atypical combinations of research domains. Using automated classification into existing IPCC themes,
the system will surface not only extensions of current categories but also entirely new recombinations patterns shown to drive
high impact science [63].

3 Originality and Innovation

The originality of our approach lies in modeling and augmenting the way humans (e.g., IPCC Lead Authors) actually search
literature, while simultaneously combining multiple modes of automated discovery into a single pipeline. Human experts
typically begin with topic-wise seed papers, then snowball outward through citation chains and semantically related works
before filtering and synthesizing evidence. Our system mirrors this process, but extends it by integrating systematic citation-
graph expansion, semantic similarity search, and LLM-based context-aware classification to evaluate whether a new study
is relevant to the specific research topic, subsection, or hypothesis under review. This layered design ensures that directly
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related, indirectly connected, and contextually relevant literature are all captured—far beyond what keyword searches or one-off
queries can achieve. By merging graph expansion, semantic enrichment, and contextual decision-making, the tool provides a
fundamentally new way to achieve comprehensive and precise synthesis.

Equally important contributor to the originality is the emphasis on transparency. Current Al-supported literature tools are
largely closed-source, proprietary, and opaque in how they retrieve and filter information. Systems like Elicit or Consensus
provide structured outputs but restrict corpus size (up to 20 papers), limit explainability, and prevent users from knowing
whether key studies were omitted. Our approach explicitly inverts this model: rather than a black box, it is designed as a glass
box where all steps from search boundaries to intermediate filtering decisions to sentence-level sources are open and auditable.
This transparency builds trust, which is crucial for future adoption of such systems into scientific workflows.

Finally, the project goes beyond static reports and creates a living knowledge system. For centuries, books and bound reports
were the primary vessels of scientific synthesis- fixed snapshots in time, necessarily outdated soon after they are published. The
future, however, lies in living, breathing documents: continuously updated, automatically-validated, and openly accessible, with
every claim transparently linked to its source. Our system will instantiate this future for climate science, integrating directly
into IAM and policy workflows, while serving an online HTML version of the IPCC reports enriched with confidence scores,
timestamps, and provenance. Rather than treating synthesis as episodic and frozen, the project establishes it as an ongoing,
dynamic process closing the gap between rapid scientific advances and the urgent needs of global climate policy. Not only will
our approach create a living, breathing IPCC report but once the evidence from each paper is quantified using numbers and
embedding vectors —instead of qualitative features — we can simply project the IPCC report as a whole onto the embedding
vector of any new research hypothesis we have and get a quantitative answer on how many papers support this or oppose this.
For all the reasons described above, this is not merely a tool that can be built, but one that must be built if climate science is to
remain actionable in real time.

Generalisation. While initially designed for IPCC assessments, the pipeline generalises to any seed document to be expanded
or synthesized. By seeding it with a reference report, the system can automatically retrieve, filter, and integrate subsequent
literature, maintaining a living version of the document in any evidence intensive domain from biodiversity assessments to
public health guidelines.

4 Methods

The workflow will consist of three main stages:

1. Identification of relevant literature. We will begin with a seed set of references identified per topic in the AR7 outlines
(or past IPCC reports), including chapter reference lists, well-known and highly cited works, and expert-selected articles.
From these seeds, the system will expand outward by retrieving all forward citations (papers citing the seed set), backward
citations (papers cited by the seed set), and semantically similar studies identified via embedding search. Each candidate
study will then be evaluated for relevance using a large language model (LLM) relevance classifier, which will process
topic—abstract pairs and produce binary inclusion decisions. Relevance will also be checked using co-citation strength
with original references.

At this stage we emphasize recall and coverage of the supra-set; false positives are expected and will be handled
downstream during the filtering stage. This ensures that the constructed supra-set captures as close as possible to the full
universe of potentially relevant studies, even if precision is initially low.

2. Synthesis and validation of findings. For each filtered paper, we will extract key findings relevant to the target [IPCC
section using LLM-based summarisation tuned for factual retention. Extracted statements will be linked to their exact
location in the source PDF to preserve provenance. The system will also classify each statement to the correct chapter,
subsection, and line of the IPCC text (LOC). A separate, independent Al model differing in architecture and training
corpus will then re-parse these passages to verify factual correctness and contextual alignment. Confidence scores will be
assigned and periodically re-calibrated. Only findings confirmed by this validator will be included in the synthesis. This
two-model approach will reduce correlated errors, increase factual accuracy, and provide a transparent chain from claim
to source text.

3. Integration into a live, online IPCC report. Validated findings will be inserted into a continuously maintained HTML
version of the IPCC report, built with a Python backend and a lightweight React-based front-end. Newly integrated
studies will be highlighted visually, accompanied by their validation status, date of integration, and direct links to source
documents. The report will be queryable by topic, confidence, and publication date, with structured outputs made
available via an API for integration into IIASA’s Integrated Assessment Models (IAMs) and related policy analysis
workflows.
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Finally, humans-in-the-loop will check new additions and validate those where Al agents are uncertain. This design will
address both timeliness and trust gaps left open by current approaches while substantially reducing the human cost of synthesis.
At a conservative €50 per fully loaded research hour, screening labour alone in AR6 likely exceeded €2 million per Working
Group. Our hybrid human—AI workflow will aim to cut this cost while enabling more frequent, iteration-friendly synthesis
cycles without sacrificing rigour. Updates will be comprehensive, auditable, and bias-aware, in contrast to fast but opaque
alternatives.
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